2.-La estimación de parámetros.
3.-El Contraste de hipótesis.
4.-El Diseño experimental.
5.-La Inferencia bayesiana.
Un estudio estadístico comprende los siguientes pasos:
1.-Planteamiento del problema
2.-Elaboración de un modelo
3.-Extracción de la muestra
4.-Tratamiento de los datos
La aproximacion normal depende del tamano de la muestra
Si n ≥ 30 , se puede aplicar el TLC, para una poblacion con cualquier tipo de distribucion de probabilidad.
La distribución t surge, en la mayoría de los estudios estadísticos prácticos, cuando la desviación típica de una población se desconoce y debe ser estimada a partir de los datos de una muestra.
Aparición y especificaciones de la distribución t
Supongamos que X1,..., Xn son variables aleatorias independientes distribuidas normalmente, con media μ y varianza σ2. Sea
la varianza muestral. Entonces, está demostrado que
tiende a la distribución normal de media 0 y varianza 1 cuando n tiende a infinito.
Gosset estudió una expresión relacionada,
si es menor, debemos tener la confianza de que la poblacion se distribuye de manera normal.
Distribucion de ji-cuadrada
En estadística, la distribución ji-cuadrado, también denominada ji-cuadrado de Pearson, es una distribución de probabilidad continua con un parámetro k que representa los grados de libertad de la variable aleatoria:
donde Zi son variables de distribución normal, de media cero y varianza uno. Esta distribución se expresa habitualmente
Donde el subíndice k de , es le número de sumandos, se denomina grados de libertad de la distribución. Se suele usar la denominada prueba ji-cuadrado como test de independencia y como test de bondad de ajuste.
Una variable aleatoria de distribución F se construye como el siguiente cociente:
Si estandarizamos:
En esta distribución normal de medias se puede calcular el intervalo de confianza donde se encontrará la media poblacional si sólo se conoce una media muestral (), con una confianza determinada. Habitualmente se manejan valores de confianza del 95% y 99%. A este valor se le llamará 1 − α (debido a que α es el error que se cometerá, un término opuesto).
Para ello se necesita calcular el punto Xα / 2 —o mejor dicho su versión estandarizada Zα / 2— junto con su "opuesto en la distribución" X − α / 2. Estos puntos delimitan la probabilidad para el intervalo, como se muestra en la siguiente imagen:

Dicho punto es el número tal que:
Objetivo de la prueba de hipótesis
El propósito de la prueba de hipótesis no es cuestionar el valor calculado del estadístico (muestral), sino hacer un juicio con respecto a la diferencia entre estadístico de muestra y un valor planteado del parámetro.
Tipos de prueba
a) Prueba bilateral o de dos extremos: la hipótesis planteada se formula con la igualdad
Ejemplo:
H0 : µ = 200
H1 : µ ≠ 200
H0 : µ ≥ 200 H0 : µ ≤ 200
H1 : µ <> 200
Cualquier investigación estadística implica la existencia de hipótesis o afirmaciones acerca de las poblaciones que se estudian.
La hipótesis nula (Ho) se refiere siempre a un valor especificado del parámetro de población, no a una estadística de muestra. La letra H significa hipótesis y el subíndice cero no hay diferencia. Por lo general hay un "no" en la hipótesis nula que indica que "no hay cambio" Podemos rechazar o aceptar Ho.
La hipótesis nula es una afirmación que no se rechaza a menos que los datos maestrales proporcionen evidencia convincente de que es falsa. El planteamiento de la hipótesis nula siempre contiene un signo de igualdad con respecto al valor especificado del parámetro.
La hipótesis alternativa (H1) es cualquier hipótesis que difiera de la hipótesis nula. Es una afirmación que se acepta si los datos maestrales proporcionan evidencia suficiente de que la hipótesis nula es falsa. Se le conoce también como la hipótesis de investigación. El planteamiento de la hipótesis alternativa nunca contiene un signo de igualdad con respecto al valor especificado del parámetro.
Paso 2: Seleccionar el nivel de significancia.
Nivel de significacia: Probabilidad de rechazar la hipótesis nula cuando es verdadera. Se le denota mediante la letra griega α, tambiιn es denominada como nivel de riesgo, este termino es mas adecuado ya que se corre el riesgo de rechazar la hipótesis nula, cuando en realidad es verdadera. Este nivel esta bajo el control de la persona que realiza la prueba.
Si suponemos que la hipótesis planteada es verdadera, entonces, el nivel de significación indicará la probabilidad de no aceptarla, es decir, estén fuera de área de aceptación. El nivel de confianza (1-α), indica la probabilidad de aceptar la hipótesis planteada, cuando es verdadera en la población.
La región de rechazo puede considerarse como el conjunto de valores de la estadística de prueba que no tienen posibilidad de presentarse si la hipótesis nula es verdadera. Por otro lado, estos valores no son tan improbables de presentarse si la hipótesis nula es falsa. El valor crítico separa la región de no rechazo de la de rechazo.
Cualquiera sea la decisión tomada a partir de una prueba de hipótesis, ya sea de aceptación de la Ho o de la Ha, puede incurrirse en error:
Un error tipo I se presenta si la hipótesis nula Ho es rechazada cuando es verdadera y debía ser aceptada. La probabilidad de cometer un error tipo I se denomina con la letra alfa α.
Un error tipo II, se denota con la letra griega β se presenta si la hipótesis nula es aceptada cuando de hecho es falsa y debía ser rechazada.
En cualquiera de los dos casos se comete un error al tomar una decisión equivocada.
En la siguiente tabla se muestran las decisiones que pueden tomar el investigador y las consecuencias posibles.
La probabilidad de cometer un error de tipo II denotada con la letra griega beta β, depende de la diferencia entre los valores supuesto y real del parámetro de la población. Como es más fácil encontrar diferencias grandes, si la diferencia entre la estadística de muestra y el correspondiente parámetro de población es grande, la probabilidad de cometer un error de tipo II, probablemente sea pequeña.
El estudio y las conclusiones que obtengamos para una población cualquiera, se habrán apoyado exclusivamente en el análisis de una parte de ésta. De la probabilidad con la que estemos dispuestos a asumir estos errores, dependerá, por ejemplo, el tamaño de la muestra requerida. Las contrastaciones se apoyan en que los datos de partida siguen una distribución normal
Existe una relación inversa entre la magnitud de los errores α y β: conforme a aumenta, β disminuye. Esto obliga a establecer con cuidado el valor de a para las pruebas estadísticas. Lo ideal sería establecer α y β.En la práctica se establece el nivel α y para disminuir el Error β se incrementa el número de observaciones en la muestra, pues así se acortan los limites de confianza respecto a la hipótesis planteada .La meta de las pruebas estadísticas es rechazar la hipótesis planteada. En otras palabras, es deseable aumentar cuando ésta es verdadera, o sea, incrementar lo que se llama poder de la prueba (1- β) La aceptación de la hipótesis planteada debe interpretarse como que la información aleatoria de la muestra disponible no permite detectar la falsedad de esta hipótesis.
Valor determinado a partir de la información muestral, que se utiliza para determinar si se rechaza la hipótesis nula., existen muchos estadísticos de prueba para nuestro caso utilizaremos los estadísticos z y t. La elección de uno de estos depende de la cantidad de muestras que se toman, si las muestras son de la prueba son iguales a 30 o mas se utiliza el estadístico z, en caso contrario se utiliza el estadístico t.
El valor estadístico z, para muestra grande y desviación estándar poblacional desconocida se determina por la ecuación:
En la prueba para una media poblacional con muestra pequeña y desviación estándar poblacional desconocida se utiliza el valor estadístico t.
Paso 4: Formular la regla de decisión
Se establece las condiciones específicas en la que se rechaza la hipótesis nula y las condiciones en que no se rechaza la hipótesis nula. La región de rechazo define la ubicación de todos los valores que son tan grandes o tan pequeños, que la probabilidad de que se presenten bajo la suposición de que la hipótesis nula es verdadera, es muy remota
Valor critico: Es el punto de división entre la región en la que se rechaza la hipótesis nula y la región en la que no se rechaza la hipótesis nula.
Paso 5: Tomar una decisión.
En este último paso de la prueba de hipótesis, se calcula el estadístico de prueba, se compara con el valor crítico y se toma la decisión de rechazar o no la hipótesis nula. Tenga presente que en una prueba de hipótesis solo se puede tomar una de dos decisiones: aceptar o rechazar la hipótesis nula. Debe subrayarse que siempre existe la posibilidad de rechazar la hipótesis nula cuando no debería haberse rechazado (error tipo I). También existe la posibilidad de que la hipótesis nula se acepte cuando debería haberse rechazado (error de tipo II).
No hay comentarios:
Publicar un comentario